Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
2nd(cons(X, n__cons(Y, Z))) → activate(Y)
from(X) → cons(X, n__from(s(X)))
cons(X1, X2) → n__cons(X1, X2)
from(X) → n__from(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Quasi-Precedence:
2nd1 > [activate1, from1] > cons2 > [ncons2, s1]
2nd1 > [activate1, from1] > nfrom1 > [ncons2, s1]
Status: from1: multiset
nfrom1: multiset
s1: multiset
cons2: multiset
activate1: multiset
ncons2: [2,1]
2nd1: multiset